TBan-I
In the following exercises, we will use the notation from extreme value statistics as introduced in the course.
Exercise 1: The Gumbel Distribution
In the spirit of the central limit theorem, you look for a scaling form:
The constants Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_M}
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_M}
absorb the dependence on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M}
, while the random variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z}
is distributed according to a probability distribution that does not depend on .
In the Gaussian case, expand Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(E)} around Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_M} :
By setting
you find
Therefore, the variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = (E - a_M)/b_M}
is distributed according to an M-independent distribution.
It is possible to generalize this result and classify the scaling forms into the Gumbel universality class:
- Characteristics:
- Applies when the tails of decay faster than any power law.
- Examples: the Gaussian case discussed here or exponential distributions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(E) = \exp(E) \quad \text{with} \quad E \in (-\infty, 0)} .
- Scaling Form:
esercizio 2: The weakest link
Exercise 3: number of states above the minimum
Definition of :Given a realization of the random energies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {E_1, E_2, \ldots, E_M}} , define
that is, the number of random variables lying above the minimum but less than Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\min}+x} . This is itself a random variable. We are interested in its mean value:
The Final goal is to show that, for large M (when the extremes are described by the Gumbel distribution), you have:
Step 1: Exact manipulations: You start from the exact expression for the probability of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} states in the interval:
To compute , you must sum over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} . Use the identity
to arrive at the form:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{M-1}(E) = [1-P(E)]^{M-1}} .
Step 2: the Gumbel limit So far, no approximations have been made. To proceed, we use Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{M-1}(E)\approx Q_M(E)} and its asymptotics Gumbel form:
where .
The main contribution to the integral comes from the region near Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \approx a_M} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(E) \approx e^{(E-a_M)/b_M}/M} .
Compute the integral and verify that you obtain: