T-7
Jump to navigation
Jump to search
Goal: the goal of this set of problems is to derive an estimate for the transition point for the Anderson model on the Bethe lattice.
Techniques: cavity method, stability analysis.
A criterion for localization
- Green functions and self-energies. Given a lattice with sites , we call the wave function completely localised in site . The Anderson model has Hamiltonian
where the local fields are random variables. We introduce the Green functions : these are functions of a complex variable belonging to the upper half of the complex plane, and are defined by [NOTA SU STILTJIES]
The local self-energies are functions defined by the equality
- Bouchaud. Weak ergodicity breaking and aging in disordered systems [1]
Y . - model on the be the lattice - self energy -criterion for localization - links to ergo breaking
Problem 7.1:
the cavity equation and the linearisation