T-7

From Disordered Systems Wiki
Jump to navigation Jump to search

Goal: the goal of this set of problems is to derive an estimate for the transition point for the Anderson model on the Bethe lattice.
Techniques: cavity method, stability analysis.

A criterion for localization

  • Green functions and self-energies. Given a lattice with sites , we call the wave function completely localised in site . The Anderson model has Hamiltonian

    where the local fields are random variables. We introduce the Green functions and the local self-energies : these are functions of a complex variable belonging to the upper half of the complex plane, and are defined by [NOTA SU STILTJIES]

    It is clear that when the kinetic term in the Hamiltonian vanishes, the local self-energies vanish; these quantities encode how much the energy levels are shifted by the presence of the kinetic term . They are random functions, because the Hamiltonian contains randomness. They encode properties on the spectrum of the Hamiltonian; the local density of eigenvalues for an Hamiltonian of size is in fact given by

    where are the eigenvalues of the Hamiltonian. [NOTA SU PLEMELJI]


  • A criterion for localization. The local self-energies encode some information on whether localization occurs. More precisely, one can claim [CITE] that localization occurs whenever the imaginary part of goes to zero when . Given the randomness, this criterion should however be formulated probabilistically.

  • Y . - model on the be the lattice - self energy -criterion for localization - links to ergo breaking

    Problem 7.1:

    the cavity equation and the linearisation


    Problem 7.2:

    Check out: key concepts of this TD

    References

    • Bouchaud. Weak ergodicity breaking and aging in disordered systems [1]