LBan-II

From Disordered Systems Wiki
Jump to navigation Jump to search

Interfaces: thermal shaking

Consider domain wall fluctuating at equilibrium at the temperature . Here is time, defines the d-dimensional coordinate of the interface and is the scalar height field. Hence, the domain wall separating two phases in a film has , in a solid instead .

Two assumptions are done:

  • Overhangs, pinch-off are neglected, so that is a scalar univalued function.
  • The dynamics is overdamped, so that we can neglect the inertial term.

Derivation

The Langevin equation of motion is

The first term is the elastic force trying to smooth the interface, the mobility is the inverse of the viscosity. The second term is the Langevin noise. It is Guassian and defined by

The symbol indicates the average over the thermal noise and the diffusion constant is fixed by the Einstein relation . We set

The potential energy of surface tension ( is the stiffness) can be expanded at the lowest order in the gradient:

Hence, we have the Edwards Wilkinson equation:

Scaling Invariance

The equation enjoys of a continuous symmetry because and cannot be distinguished. This is a condition of scale invariance:

Here are the dynamic and the roughness exponent respectively. From dimensional analysis

From which you get in any dimension and a rough interface below with .

Explicit Solution

For simplicity, consider a 1-dimensional line of size L with periodic boundary conditions. It is useful to introduce the Fourier modes:

Here and recall .

  • Show that the EW equation writes

The solution of this first order linear equation writes

Assume that the interface is initially flat, namely .

  • Compute the width . Comment about the roughness and the short times growth.