LBan-II

From Disordered Systems Wiki
Jump to navigation Jump to search

Introduction: Interfaces and Directed Polymers

The physical properties of many materials are governed by manifolds embedded in them. Examples include: dislocations in crystals, domain walls in ferromagnets or vortex lines in superconductors. We fix the following notation: - : spatial dimension of the embedding medium – : internal dimension of the manifold – : dimension of the displacement (or height) field

These satisfy the relation:

We focus on two important cases:

Directed Polymers (d = 1)

The configuration is described by a vector function: , where is the internal coordinate. The polymer lives in dimensions.

Examples: vortex lines, DNA strands, fronts.

Although polymers may form loops, we restrict to directed polymers, i.e., configurations without overhangs or backward turns.

Interfaces (N = 1)

The interface is described by a scalar height field: , where is the internal coordinate and represents time.

Examples: domain walls and propagating fronts

Again we neglect overhangs or pinch-off: is single-valued

Note that using our notation the 1D front is both an interface and a directed polymer

Thermal Interfaces

  • The dynamics is overdamped, so that we can neglect the inertial term.

The Langevin equation of motion is

The first term is the elastic force trying to smooth the interface, the mobility is the inverse of the viscosity. The second term is the Langevin noise. It is Guassian and defined by

The symbol indicates the average over the thermal noise and the diffusion constant is fixed by the Einstein relation . We set

The potential energy of surface tension ( is the stiffness) can be expanded at the lowest order in the gradient:

Hence, we have the Edwards Wilkinson equation:

Scaling Invariance

The equation enjoys of a continuous symmetry because and cannot be distinguished. This is a condition of scale invariance:

Here are the dynamic and the roughness exponent respectively. From dimensional analysis

From which you get in any dimension and a rough interface below with .

Explicit Solution

For simplicity, consider a 1-dimensional line of size L with periodic boundary conditions. It is useful to introduce the Fourier modes:

Here and recall .

  • Show that the EW equation writes

The solution of this first order linear equation writes

Assume that the interface is initially flat, namely .

  • Compute the width . Comment about the roughness and the short times growth.